Glycophosphatidylinositol-anchored proteins in Paramecium tetraurelia: possible role in chemoresponse.
نویسندگان
چکیده
We have begun to characterize the glycophosphatidylinositol (GPI)-anchored proteins of the Paramecium tetraurelia cell body surface where receptors and binding sites for attractant stimuli are found. We demonstrate here (i) that inositol-specific exogenous phospholipase C (PLC) treatment of the cell body membranes (pellicles) removes proteins with GPI anchors, (ii) that, as in P. primaurelia, there is an endogenous lipase that responds differently to PLC inhibitors compared with its response to an exogenous PLC, (iii) that salt and ethanol treatment of cells removes GPI-anchored proteins from whole, intact cells, (iv) that Triton X-114 phase partitioning shows that many GPI-anchored proteins are cleaved from pellicles by the endogenous lipase and enter the aqueous phase, and (v) that integral membrane proteins are not among those cleaved with PLC or in the salt/ethanol wash. Antisera against the proteins removed by the salt/ethanol washing procedure include antibodies against large surface antigens, which we confirm in this species to be GPI-anchored, and against an array of proteins of smaller molecular mass. These antisera specifically block the chemoresponse to some stimuli, such as folate, which we suggest are signaled through GPI-anchored receptors. Responses to cyclic AMP, which we believe involve an integral membrane protein receptor, and to NH4Cl, which requires no receptor, are not affected by the antisera. Antiserum against a mammalian GPI-anchored folate-binding protein recognizes a single band among the GPI-anchored salt and ethanol wash proteins. The same antiserum specifically blocks the chemoresponse to folate.
منابع مشابه
Glycosyl phosphatidylinositol-anchored proteins in chemosensory signaling: antisense manipulation of Paramecium tetraurelia PIG-A gene expression.
Glycosyl phosphatidylinositol (GPI)-anchored proteins are peripheral membrane proteins tethered to the cell through a lipid anchor. GPI-anchored proteins serve many functions in cellular physiology and cell signaling. The PIG-A gene codes for one of the enzymes of a complex that catalyzes the first step in anchor synthesis, and we have cloned the Paramecium tetraurelia pPIG-A gene using homolog...
متن کاملThe cloning by complementation of the pawn-A gene in Paramecium.
The genetic dissection of a simple avoidance reaction behavior in Paramecium tetraurelia has shown that ion channels are a critical molecular element in signal transduction. Pawn mutants, for example, were originally selected for their inability to swim backward, a trait that has since been shown to result from the loss of a voltage-dependent calcium current. The several genes defined by this p...
متن کاملG-protein modulators alter the swimming behavior and calcium influx of Paramecium tetraurelia.
To assess the potential role of G-proteins in chemokinesis, Paramecium tetraurelia was pre-incubated with the G-protein modulator pertussis toxin. Pertussis toxin pretreatment significantly reduced Paramecium chemoattraction to sodium acetate and ammonium chloride in T-maze behavioral assays and depressed the frequency of avoidance reactions, indicating that heterotrimeric G-proteins may be inv...
متن کاملSelective and programmed cleavage of GPI-anchored proteins from the surface membrane by phospholipase C.
Many surface proteins of eukaryotic cells are tethered to the membrane by a GPI-anchor which is enzymatically cleavable. Here, we investigate cleavage and release of different GPI-proteins by phospholipase C from the outer membrane of the ciliate Paramecium tetraurelia. Our data indicate that different GPI-proteins are not equally cleaved as proteins of the surface antigen family are preferenti...
متن کاملExtremely short 20-33 nucleotide introns are the standard length in Paramecium tetraurelia.
Paramecium tetraurelia has the shortest known introns as its standard intron length. Sequenced introns vary between 20 and 33 nucleotides in length. The intron sequences were discovered in genomic sequences coding for a variety of different proteins, including phosphatases, kinases, and low-molecular weight GTP-binding proteins. All intron sequences begin with the conserved dinucleotide GT and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 204 Pt 16 شماره
صفحات -
تاریخ انتشار 2001